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Abstract Thyroid hormone (TH) has a fundamental role

in cardiovascular homeostasis in both physiological and

pathological conditions, influencing cardiac contractility,

heart rate (HR), diastolic function and systemic vascular

resistance (SVR) through genomic and non-genomic

mediated effects. In heart failure (HF) the main alteration

of thyroid function is referred to as ‘‘low-triiodothyronine

(T3) syndrome’’ (LT3S) characterized by decreased total

serum T3 and free T3 (fT3) with normal levels of thyroxine

(T4) and thyrotropin (TSH). Even if commonly interpreted

as an adaptive factor, LT3S may have potential negative

effects, contributing to the progressive deterioration of

cardiac function and myocardial remodeling in HF and

representing a powerful predictor of mortality in HF

patients. All these observations, together with the early

evidence of the benefits of T3 administration in HF patients

indicate that placebo-controlled prospective studies are

now needed to better define the safety and prognostic

effects of chronic treatment with synthetic TH in HF.
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Introduction

Heart failure and thyroid: a well-known but not yet

well-understood relationship

Heart failure (HF) is a restless syndrome which represents

the common final pathway of the majority of cardiac

pathologies. Beginning as a single organ disease, it

becomes a systemic disease during its evolution and pro-

gression. In the initial phases of HF, the decreased cardiac

output, the increase in atrial pressure and/or the inadequate

arterial circulating volume is compensated for by the

activation of the renin–angiotensin–aldosterone system

(RAS) and the sympathetic nervous system (SNS) leading

to peripheral vasoconstriction to preserve blood pressure

homeostasis in vital areas and regulate sodium and water

retention to preserve blood volume [1, 2]. These alterations

are at the basis of the two models—the so-called hemo-

dynamic model and cardio-renal model—proposed in the

past in attempt to describe the pathophysiology of the

disease. These models provided the rational for the use of

inotropic, vasodilatatory drugs and diuretics as therapeu-

tical strategies in HF. Even if these therapies are effective

in reducing signs and symptoms of HF, they have scarce

effects in preventing progression of the disease and in

improving prognosis. The recent proposed neuroendocrine

model can represent a more appropriate explanation of the

systemic involvement of HF because it supports the exis-

tence of a complex pattern of relationships between

hormonal, immunological and proinflammatory systems

like RAS, SNS, natriuretic peptides, neuropeptides, vaso-

pressin, cytokines and endothelium mediators [1, 2].

Beginning as a compensatory mechanisms, neuroendocrine

activation ultimately has toxic effects, inducing calcium

overload, myocite apoptosis, myocardial fibrosis and
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cardiac remodeling, leading to progressive function dete-

rioration [3, 4]. Current treatment for HF is able to

modulate the pathophysiological mechanisms that are

stimulated in the disease and often requires multiple

medications including b-adrenergic blocking drugs,

angiotensin-converting enzyme inhibitors, aldosterone

antagonists, diuretics and to a lesser extent, digitalis.

Noteworthy, despite maximum medical therapy HF is still

one of the major causes of morbidity, mortality, and hos-

pitalization in Western Countries. From a European

perspective, the Rotterdam Study showed that in individ-

uals aged 55 years, 30% will develop HF during their

remaining lifespan, with only 35% surviving 5 years after

the first diagnosis, representing an epidemic and a great

burden on health care systems [5]. This evidence suggests

that something is lacking in the full interpretation of the

disease progression. In this context, growing interest in the

role of thyroid hormones (TH) in HF relies on many

assumptions: (1) both hyper- and hypothyroidism are

accompanied by relevant changes in cardiac output, cardiac

contractility, vascular resistance, and blood pressure that

are well explained by the cellular mechanisms of TH

actions in the heart and cardiovascular system; (2) the

restoration of normal thyroid function, even in patients

with mild TH abnormalities, very often reverses abnormal

cardiovascular hemodynamics [6–8]; (3) subclinical

hypothyroidism (SHYPO) and hyperthyroidism (SHYPER)

are characterized by the apparent absence of typical clini-

cal signs or symptoms of thyroid disease, but are associated

with an increased risk for cardiovascular mortality in car-

diac patients [9], suggesting that restoration of

euthyroidism could be beneficial; (4) 13–30% of patients

with congestive HF develop a fall in serum biologically

active serum triiodothyronine (T3) levels, referred to as

low-T3 syndrome (LT3S) [9–15]; (5) an altered thyroid

metabolism is already evident in the very early phases of

left ventricular dysfunction and the decrease in serum T3 is

proportional to the severity of heart disease and symptoms,

as assessed by the New York Heart Association functional

classification [16].

Cellular mechanisms of TH action

The thyroid gland synthesises and releases TH mostly as

thyroxine (T4), while most ([80%) T3, the biological

active form of the hormone, is obtained (at least in humans)

by peripheral deiodination of T4 through the action of type

I (D1) and type II (D2)-50 deiodinase. Almost all circu-

lating and intratissutal concentration of TH is the result of

D1 and D2 desiodative pathway [17, 18]. Another type of

deiodinase, called type III deiodinase (D3), removes iodine

from the 5-(or equivalent 3-) position of the tyrosyl ring of

the hormone molecule and therefore is an obligatory

inactivating enzyme [19]. In normal conditions, the heart

relies mainly on serum T3 because no significant myocyte

intracellular deiodinase activity takes place, and it appears

that T3, and not T4, is transported into the myocyte [20]. In

spite of this, a mild desiodase activity is present both in

atria and ventricles and is modified by pathologic condi-

tions. In an in vitro study about the expression of

iodothyronine 50-monodeiodinase activities in normal and

pathological tissues in man, Sabatino et al. observed that

the right cardiac atrium basally presents a mild D1 activity,

that is further reduced in ischemic conditions [21]. Like-

wise, Wassen et al. demonstrated that a low level of D3

activity is present in both right and left ventricles of

experimental animals, and increases in conditions of

induced HF [22]. Recently, Simonides et al. have shown

that hypoxia induced the expression of the D3 gene DIO3

by an hypoxia-inducible factor-dependent (HIF-dependent)

pathway in diverse cell types including neurons, hepato-

cytes, and even cardiomyocytes. In particular, using a rat

model of cardiac failure due to right ventricular hypertro-

phy, they found that D3 proteins were specifically induced

in the hypertrophic and hypoxic myocardium of the right

ventricle, associated with a local anatomically precise

decrease in T3 as well as T3-dependent transcriptional

activity [23]. All these observations suggest the hypothesis

that desiodase activities could have a key role in modu-

lating cardiac levels of available biologically active T3,

thus contributing to the local hypothyroid state in the

failing heart [22, 23]. T3 cellular actions are mediated by

non-nuclear and genomic, nuclear mechanisms. Thyroid

non-genomic actions are rapid in onset and are localized at

the level of the plasma membrane, cytoplasm and cellular

organelles of various tissues including the myocardium,

and modulate cellular metabolic activities such as sugar

and amino acid transport, ion fluxes at the level of the

plasma membrane [24, 25] and mitochondrial gene

expression and function [26], even modulating the gener-

ation of intracellular secondary messengers and induction

of Calcium-dependent, cyclic AMP or protein kinase sig-

naling cascades [27]. T3 exerts its nuclear action through

binding TH nuclear receptors (TRs), which belong to the

superfamily of steroid hormone receptors. These receptor

proteins mediate the induction of transcription by binding

to thyroid hormone response elements (TREs), that are

specific DNA sequences in the promoter regions of posi-

tively regulated genes. TRs bind to TREs in the absence as

well as in the presence of ligand. TRs bind to TREs as

homodimers or, more commonly, as heterodimers with one

of three isoforms of retinoid X receptor [24]. All TRs are

splicing variants of the product of two main genes, a and b.

TRa1, TRa2, and TRb1 are widely expressed; TRb2 is

present mainly in pituitary cells and represents a small
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fraction of T3-binding TRs in the heart, while TRb3 rep-

resents a minor variant. TRa2 binds TREs on DNA, but

does not bind T3 and can function as a dominant negative,

also suppressing TRa1 trascription and producing a hypo-

thyroid-like effect and actively modulating TH signaling

[28]. On a TRE-containing target gene, TH binding acts as

a switch between repressed and activated states. However,

while positive regulation of gene expression by TH is

nicely explained by this model, TH also downregulates

numerous genes [24, 29]. The mechanism of negative

regulation is not well understood: in one model, the TR

binds directly, via its DNA-binding domain, to a ‘‘nega-

tive’’ TRE in a negatively regulated gene [30], but it is

possible that another mechanism for negative regulation is

a squelching model, whereby TR acts in the nucleus to

steal co-activators and co-repressors from other nuclear

receptors as well as additional transcription factors that

utilize the same coactivators or corepressors [31]. Notably,

non-genomic and genomic actions of TH may interface

because TR can also exert effects through non-classical

mechanisms involving activation of signal transduction

pathways leading to activation of kinase cascades that

ultimately impact on nuclear transcription factor function

[32].

Thyroid hormones and the cardiovascular system

Beginning during the development and extending to adult

physiology, a close relationship exists between the thyroid

gland and the cardiovascular system. This intimacy is

affirmed by the predictable changes in cardiovascular

function that occur across the entire range of thyroid dis-

ease states. TH effects on the cardiac myocyte are

intimately associated with cardiac function via regulation

of the expression of key structural and regulatory genes of

several enzymes, functional and structural proteins such as

myosin heavy chain (MHC) a and b, the sarcoplasmic

reticulum Ca??-ATPase (SERCA2) and its inhibitor

phospholamban, voltage-gated K? channels, b1-adrenergic

receptor, guanine nucleotide regulatory proteins, adenylate

cyclase, NA?/K?-ATPase, and Na/Ca exchanger [6–8].

The net effect of all these activities is that TH influences

diastolic and systolic function both directly and indirectly.

The increased left ventricular relaxation is mediated

through the activation of the SERCA2, which reduces

cytosolic calcium from the high systolic to low resting

levels in diastole [33], and the concomitant inhibition of

phospholamban, which inhibits SERCA through a decrease

in the affinity of the enzyme for Ca?? [34]. The TH direct

effects on contractility are mediated by increasing the a-

MHC content, which have a high contractility state and

decreasing b-MHC expression, which is associated with a

better energetic efficiency and economy of force mainte-

nance [35]. As shown in experimental models, TH are

active also at the vascular level [36]. In primary cultures of

vascular endothelial cells, exposure to T3 induced vascular

relaxation that was not associated with nitric oxide pro-

duction as measured by cellular cGMP content and nitrite

release. These observations suggest that T3 acts directly on

the vasculature, in a manner that is non-genomic and

endothelium independent [37]. On the contrary, in an in

vivo model of hamster cheek pouch microcirculation, Co-

lantuoni et al. showed that T3 administration caused a

dose-dependent vasodilatation of the arterioles within few

minutes of its application, which was abolished by nitric

oxide synthase (NOS) inhibition, indicating a correlation

between T3-induced dilatation and NOS activation [38].

These discrepancies with previous in vitro findings may be

ascribed to differences in the experimental procedure and it

is reasonable to suppose that in vitro conditions do not

allow one to observe the integrated response of the

peripheral microcirculation that are evident in vivo. In the

same hamster cheek pouch microcirculation model, T4

application on vascular smooth muscle cells (VSMCs)

determines dilatation that is delayed in onset, requiring

local conversion to T3 by the activity of 50-deiodinase.

Interestingly, the effect of T4 is abolished by unselective

deiodinase inhibition by iopanoic acid (IPA), while

6-Propyl-2-Thiouracil (PTU), a selective inhibitor of D1

does not interfere with the dilatation induced by T4 and

confirms the hypothesis of the presence of D2 in VSMCs,

as previously observed by Mizuma et al. in cultured human

VSMCs [38, 39]. Furthermore, TH may have also some

genomic effects, modulating the expression of genes that

are fundamental in maintaining endothelial homeostasis

such as angiotensin receptors in VSMCs [40] and rein-

forcing the hypothesis that vasculature is a principal target

for TH action. This appears to be confirmed by the char-

acteristically high systemic vascular resistance (SVR)

observed in patients and experimental animals with hypo-

thyroidism, which is rapidly reversed with TH treatment

[41, 42]. On the contrary, hyperthyroidism produces a

marked decrease in SVR, which in turn facilitates an

increase in cardiac output and augments peripheral blood

flow [43].

The vasodilatory response induced by TH is not uni-

form. Administration of T3 in vivo in the circulation of

major organs of anesthetized rabbits is associated with a

vasodilatory response that occurs preferentially in the

ventricles and kidneys, but not in the atria or skeletal

muscle [44]. The observation of a vasodilatory response

induced by TH in coronary arteries is in line with previous

reports by Yoneda et al. that showed that a bolus injection

of T3 or T4 in rat coronary arteries elicited a transient,

dose-dependent decrease in coronary perfusion pressure, as
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well as an increase in arterial vasodilation [45]. The doc-

umented expression of D2 by coronary VSMCs suggests

that intracellular TH activation may be involved in the

modulation of DNA synthesis and probably in migration

activity of human coronary VSMCs [46]. These results,

together with the observation that coronary flow reserve is

impaired in patients with SHYPO [47] support the

hypothesis that THs may play a role in preventing myo-

cardial ischemia and ameliorating cardiac function.

Considering overall genomic and non-genomic cellular

effects of TH on the heart and vascular system, it is not

surprising that these hormones play a pivotal role in car-

diovascular homeostasis. TH act first to lower SVR through

the above-mentioned pathways, which cause mean arterial

pressure to decrease. This is sensed by the juxtaglomerular

apparatus, which leads to increased renin synthesis and

secretion and to an increase in blood volume and preload

enhancing both cardiac output [6–8, 43, 48]. The final

hemodynamic result is that TH homeostasis preserves a

positive ventricle-arterial coupling, thus leading to a more

favorable balance for the heart to work without increment

in left ventricular oxygen consumption [49]. The impor-

tance of TH in maintaining cardiovascular homeostasis is

also deducible from data showing that mild forms of TH

abnormalities, i.e., SHYPO and SHYPER, significantly

alter cardiovascular function. In particular, SHYPO is

associated with left ventricular diastolic dysfunction evi-

denced by delayed relaxation, impaired systolic function on

effort that results in poor exercise capacity, decreased

cardiac preload and increased afterload with a consequent

reduction in stroke volume (SV) [50]. As shown in a study

in which cardiac function was studied in patient with

SHYPO using cardiac magnetic resonance (CMR) before

and after TH replacement therapy, patients with SHYPO

showed reduced end diastolic volume and increased SVR,

leading to a reduction in SV [51]. Since in these patients

heart rate (HR) was unaffected by TH abnormalities, the

reduction in the so-called double product (the product of

HR and systolic blood pressure which represent an estimate

of systolic function) seen in SHYPO was attributable only

to the decreased SV and increased SVR. All hemodynamic

alterations described typically reversed to normal after TH

replacement therapy and are sufficient to explain the

decrease in systolic pump performance observed in

SHYPO patients, without the need to invoke simultaneous

impairment in myocardial inotropic function [52] (Fig. 1).
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Fig. 1 Scatterplots showing the

relationship between thyroid-

stimulating hormone (TSH) and

end- diastolic volume (EDV),

stroke volume (SV), cardiac

index (CI) and systemic

vascular resistences (SVR).

Open circles: subclinical

hypothyroidism (SHYPO)

patients before thyroid

replacement therapy; filled
circles: SHYPO patients after

thyroid replacement therapy;

open triangles: control group

Modified from Ripoli et al. [51]
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In this study, a relative good correlation was found between

thyrotropin (TSH), the best biochemical marker of whole-

body thyroid hypofunction and the parameters of systolic

left ventricular performances. This finding fits well with the

results from a population-based survey by Rodondi et al.,

in which SHYPO was associated with a higher rate of

incident and recurrent congestive HF in a manner that is

correlated with TSH level; notably this association per-

sisted after adjustment for traditional cardiovascular risk

factors [52]. SHYPO is also characterized by an altered

lipid metabolism, with elevated total and LDL cholesterol

levels and low HDL [53], by endothelial dysfunction

resulting from a reduction in nitric oxide availability as

seen in the impairment in the endothelium-dependent

vasodilatation [54] and by an increase in intima-media

thickness [55] that could be reversed by hormone

replacement therapy [56]. Furthermore SHYPO has been

identified as a strong predictor of mortality in chronic

dialysis patients and a risk factor for nephropathy and

cardiovascular events in type II diabetic patients [57]. A

recent survey by Chonchol et al. [58] revealed that SHYPO

is also associated with a significant decrease in glomerular

filtration rate (GFR) in general population, with a preva-

lence that increase at lower GFR. All the described aspects

are probably responsible for the increased risk of athero-

sclerosis and probably of coronary artery disease (CAD)

seen in patients with SHYPO [59, 60]. As SHYPO, SHY-

PER is associated with many cardiovascular effects.

Increased HR and increased risk for atrial arrhythmias,

particularly atrial fibrillation [61], are attributable to the

effects of T3 on systolic depolarization and diastolic

repolarization, with a decrease in the action potential and

refractory period duration in atrial and ventricular myo-

cardium [62]. Holter ECG recordings show a decreased

cardiac vagal control that may have important clinical

implication, since reduced HR variability may predict an

increased risk for subsequent cardiac events in the general

population [63]. SHYPER is also associated with an

increased left ventricular mass at Doppler echocardiogra-

phy [64], which significantly correlates with late diastolic

dysfunction [65] and with decreased exercise tolerance,

maximal VO2 achieved at the peak exercise and anaerobic

threshold with severe impairment of quality of life [66].

Whether subclinical thyroid dysfunction per se con-

tributes to an increase in cardiovascular and overall

mortality in general population is still a matter of debate. In

the last few years, many population-based studies have

attempted to answer this question but the results are

somewhat contradictory [9, 52, 60, 67–73]. In any case,

given the relevant unfavorable effect of subclinical thyroid

dysfunction on cardiac morphologic features and function,

blood pressure and HR and renal function (Table 1), the

observation made by Iervasi et al. of a significant increase

in cardiac and overall mortality in cardiac patients with

subclinical thyroid disease [9] should not be considered a

surprising finding but simply the confirmation of the close

relationship between cardiovascular homeostasis and TH

axis.

Pathophysiological effects of an altered TH state

in heart failure

LT3S is the most common alteration of TH metabolism in

patients with HF. It could be more properly but generically

defined as ‘‘Non-thyroidal illness syndrome’’ since it

appears in patients without previous thyroid disorders, but

who suffer from severe clinical conditions such as starva-

tion [74], HF [9–14], acute myocardial infarction [75, 76],

heart (or other organ) surgery [77–80] or in intensive care

patients [81]. These patients have low serum T3 levels—

which are inversely related to the severity of their illness—

associated with normal or mildly reduced serum T4 and

TSH concentrations and increased reverse-T3 (rT3) plasma

levels [81]. The physiological bases for the development of

a low T3 state in patients with severe illness and, in par-

ticular, with HF, are not been clearly understood, but

central and peripheral mechanisms have been called in

cause. There are at least three potential mechanisms that

may explain the development of the LT3S in severely ill

patients: (1) a decreased extrathyroidal conversion of T4

attributable to a diminished activity of peripheral deio-

dinase, associated with a decreased transport of T4 into

tissues [81, 82]; (2) increased peripheral TH catabolism

due to an ectopic induction of D3 activity in peripheral

Table 1 Effects of thyroid hormone on heart failure physiology

Main

findings

in HF

Effects of low

thyroid state/

function

Effects of T3

treatment

Cardiovascular system

LV systolic function ; ; :

LV diastolic function ; ; :

Systemic vascular

resistances

: : ;

Renal function

Glomerular filtration

rate

; ; :

Neuroendocrine system

Norepinephrine : : ;

Aldosterone : No effect or : ;

Natriuretic peptides

Synthesis : ; :

Resistance : No effect No effect

LV left ventricle
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tissues [83] and to increased sulfation, as shown by the

elevated plasma levels of T4 sulfate in patients who died in

intensive care units [84]; (3) the development of central

hypothyroidism as shown by the decreased plasma levels of

TSH and by the concomitant abnormalities in thyrotropin

releasing hormone (TRH) plasma concentration, clearance,

half-time, and effects [85]. While these mechanisms are

able to explain the low T3 levels observed in the syndrome,

the elevation in serum rT3 levels is attributable to both a

diminished renal clearence and a reduced peripheral

catabolism [81].

Although a comprehensive theory explaining the etio-

pathogenesis of LT3S in severely ill patients is still

lacking, there is evidence that the increased levels of

interleukins and cytokines (i.e., Interleukin-6, Tumor

Necrosis Factor) seen in patients with severe illness are

associated (in clinical and experimental settings) with a TH

pattern similar to low T3 state [86–89]. This observation is

particularly interesting because supports the hypothesis of

a close integration between neuroendocrine and proin-

flammatory/immunitary systems, which also have a pivotal

role in explaining the progression of HF toward cachexia

[90]. Moreover, the abnormalities in TRs expression

observed in patients with HF [91–93] could contribute,

along with reduced plasma T3 levels and decreased

desiodase activities, to the development of tissue hypo-

thyroidism. As highlighted by Liu et al. in a rat model of

thyroidectomy-induced hypothyroidism, T4 replacement

therapy was able to normalize TH plasma levels, but not to

reverse cardiac atrophy and arteriolar rarefaction, sug-

gesting that serum TH levels may not accurately reflect TH

tissue levels [93]. From this point of view, a full expla-

nation of TH cellular action in patients with HF is

necessarily associated with understanding the TR system.

In human hearts, two TR genes are expressed and each

gene generates two isoforms: TRa1, TRa2 and TRb1,

TRb2. All types of TRs are homogeneously expressed in

human atria and ventricles from euthyroid patients with

normal cardiac function when TR-mRNA is measured with

an accurate quantitative approach such as real time PCR

[94]. On the contrary, various data in literature show that

cardiac dysfunction is associated with abnormalities in TR

gene expression. A study from Sylven et al. described a

decrease in TRa1 levels in the failing myocardium and an

increase of TRb1, while TRa2 levels remained unchanged

[91]. In an analogous report, Kinugawa et al. showed no

significant differences in total TRa gene expression, with

an increase in TRa2 levels and a concomitant decrease in

TRa1 [92]. Most of the reported data seem to indicate that

the actual number of TH receptors, and in particular TRa1,

are fewer in presence of HF, possibly contributing to

making cardiac tissue less responsive to TH signaling and

representing a potential therapeutical target [95].

Moreover, abnormalities in TR may aid in understanding

the possible close interrelationships between an altered

thyroid state observed during progression of HF and

remodeling of the myocardium. During fetal life, low-cir-

culating TH levels are associated with a specific pattern of

TR activity: the unliganded receptors, particularly TRa,

bind DNA and repress the transcription of target genes

such as TRb and several genes encoding ion channels

involved in cardiac contractile activity. When T3 concen-

tration increases after birth, inactivation of TRa turns on

the expression of previously inhibited genes, becoming a

molecular switch of cardiac function between fetal and

postanatal life [96]. TH deficiency, as seen in the LT3S,

and the concomitant alteration in TR expression resulting

in tissue-specific hypothyroidism seen in failing hearts

[97], could contribute to explaining the molecular mecha-

nism that induces fetal gene expression in the failing

human ventricle and the so-called activation of the fetal

gene program, otherwise indicated as ‘‘recapitulation of

fetal phenotype’’, typical of cardiac dysfunction [98–101].

Effects of TH on myocardial protein gene expression

In a rat model of starvation-induced LT3S, the mRNA

content of cardiac a-MHC gene was reduced by 46% when

compared with controls; importantly, the decline was lin-

early related to the decrease in serum T3 [102]. A similar

result was observed on SERCA2 mRNA content. Systolic

and diastolic left ventricular function were also affected,

with a reduction in left ventricular contractility, as reflected

by the 13% reduction in ?DP/dt, and worsened diastolic

function as clearly expressed by the 21% increase in mean

left ventricular relaxation time. Importantly, supplementa-

tion with synthetic T3 normalized the a-MHC isoform and

SERCA2 contents despite persistence of food restriction, as

well as improved systolic and diastolic heart performance

[102]. These results are similar to those obtained by

Ladenson et al. in a patient with dilated cardiomyopathy

and hypothyroidism. Also in this case restoration of

euthyroidism was associated with an 11-fold increase in

ventricular a-MHC mRNA levels and substantial reduction

of ANF mRNA and with a gradual and substantial

improvement in the patient’s ventricular ejection fraction

and functional capacity [103].

Effects of low T3 on cardiac histology and

cardiomyocyte morphology

As shown by Forini et al. in human atrial myocardial tissue

in vitro, long-term T3 deprivation has detrimental effects

on myocardial histology and morphology, leading to cel-

lular disorganization, fibrosis and phenotypical remodeling

which resemble cellular and structural impairment
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observed during HF progression [104]. At the molecular

level, these alterations are the result of a decreased

expression and activity of SERCA2, leading to poor cal-

cium cycling, which in turn has been found to be associated

with reduced frequency and potentiation of contractile

force, an important marker of HF [105]. The concomitant

significant reduction in a-sarcomeric-actinin, a cytoskeletal

molecule which is essential in the maintenance of sarco-

meric organization, leads to abnormalities in myocyte

shape and geometry [104]. If we consider that the cyto-

skeleton is a complex network of filaments and tubules

which transmit mechanical and chemical stimuli within and

between cells and contributes substantially to cell stability

by anchoring subcellular structures, such as mitochondria,

Golgi apparatus, nuclei, and myofibrils [106], it is not

surprising that cytoskeletal abnormalities induced by TH

deprivation could represent a morphological basis for

reduced contractile function. Moreover, cytoskeletal

abnormalities narrow the gap between changes within

cardiac myocytes and the extracellular matrix, contributing

to alterations in myocardial shape and geometry. The

influence of TH on determining myocardial shape is further

reinforced by the observations made by Pantos et al. on

culture of rat neonatal cardiomyocytes supplemented with

T3 [107]. In this in vitro study, supplementation with T3

was associated with an increased ratio of the major to

minor cell axis and with a change in myocyte shape from

an almost circular to an elongated form with respect to

untreated cultured cells. These morphological alterations

were associated with an increase in protein synthesis, since

T3-treated cells expressed 51% a-MHC and 49% b-MHC

as compared to 100% b-MHC expression in non-treated

cells. This response was accompanied by a concomitant

increase in phospho-ERK. Administration of PD98059 (an

inhibitor of ERK signaling) prevented the TH-induced

changes in cardiomyocyte geometry and shape without a

significant reduction in cell area and protein synthesis,

showing that T3-induced changes in cardiomyocyte shape

and geometry involve specific patterns of intracellular

messenger such as ERK kinase signaling.

The observation made by Lee et al. that hyperthyroid-

ism-induced myocardial hypertrophy is not associated with

myocardial fibrosis supports the hypothesis that TH are

able to regulate extracellular matrix synthesis [108].

Actually, TH downregulates collagen type I biosynthesis in

the heart and fibroblasts through a genomic mechanism that

require an interaction between AP-1 and TR [108]. More-

over, TH administration can normalize collagen type I

expression in ventricular issues in a genetic model of car-

diac fibrosis [109] and prevent fibrosis in aortic banded

animals [110]. The observation that TH administration can

prevent myocardial fibrosis, even in pathologic conditions,

seems particularly interesting if we consider the role of

fibrosis in determining morphological alteration, systolic

and diastolic dysfunction in HF [111].

Effects of THs on myocardial blood flow

Associated with the previously described abnormalities in

diastolic and systolic function, TH deficiency is charac-

terized by severe impairment in coronary blood flow, a

rarefaction in myocardial arterioles, myocyte loss and a

greater extent of fibronecrosis, as can be seen in a model of

cardiomyopathic hamster that develops SHYPO [112].

This evidence is in accordance with previous observations

made in the same animal model by Ryoke et al., who

concluded that ischemic myocite loss (oncosis), rather than

apoptosis, was the likely explanation for pathological

changes found in cardiomyophatic hamsters [113] and

could be attributed to the reduced availability of endothe-

lial NOS synthesis that has been shown to be reduced in

SHYPO [54]. Interestingly, treatment of cardiomyopathic

hamsters with a replacement dose of TH partially reversed

these abnormalities. This observation is in line with the

well-known effects of TH on microvasculature [112]. A

marked angiogenetic response within the myocardium of

rats chronically treated with TH has been recently docu-

mented [114] and is probably dependent on the

up-regulation of pro-angiogenetic factors such as FGF,

VEGF, angiopoietin and Tie-2 [115, 116] through a MAP

kinase-dependent pathway [117]. This experimental evi-

dence has important clinical impact since about 80% of HF

can be attributed to CAD. Furthermore, an abnormal cor-

onary microcirculatory flow, potentially causing

impairment of myocardial perfusion and regional meta-

bolic changes compatible with myocardial ischemia, has

been shown in patients with dilated cardiomyopathy [118].

The severity of flow abnormalities and hence microvas-

cular dysfunction, is able to predict the evolution of the

disease towards progressive ventricular dysfunction and

HF, and is a predictor of poor prognosis in patients with

idiopathic left ventricular dysfunction independently of the

degree of left ventricular functional impairment and of the

presence of overt HF [119]. Although TH are currently

being evaluated as an inotrope and vasodilator in various

clinical settings, new information has been gathered

recently in an experimental setting regarding the protective

role of TH in the response of the heart to ischemic stress

[120]. The physiological basis of these observations rests

on the substantial anti-oxidant effects of TH. During

reperfusion of the post-ischemic rat heart, TH administra-

tion leads to improved coupling of glycolysis to glucose

oxidation, thereby decreasing H? production and increas-

ing cardiac efficiency as well as contractile function [121].

Moreover, Chen et al. have studied the effect of 3 days of

T3 treatment on left ventricular function and myocyte
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apoptosis after coronary ligation induced myocardial

infarction in rat. Compared with sham-operated animals,

rats with myocardial infarction showed significantly

increased cardiac chamber dimension, decreased left ven-

tricular function and significantly increased myocyte

apoptosis in the border area of the infarct, as assessed by

DNA laddering and TUNEL assay. Interestingly, T3

treatment was associated with a decrease in myocyte

ischemia-induced apoptosis, through the non-genomic

activation of Akt signaling pathway, which has been shown

to play a role in regulating cardiomyocyte growth and

survival [122]. Another potential mechanism of TH-

induced cardioprotection is the increased expression of

heat shock proteins such as HSP-27 and HSP-70, two

redox-regulated molecular chaperones that enhance cell

survival under stress [123, 124]. This TH effect seems

particularly interesting since in patients with left ventric-

ular dysfunction due to non-atherosclerotic cardiac disease,

serum levels of heat shock proteins, IL-6 and CRP are

elevated and the entity of this elevation is associated with a

more severe disease as evidenced by a more depressed

myocardial blood flow at rest and during dypiridamole,

indicative of microvascular impairment [125].

Thyroid hormones and heart failure: clinical evidence

The hypothesis that an altered TH metabolism may play a

direct role in the complex pathophysiology of HF pro-

gression is strongly suggested by the above-mentioned

experimental evidence and reinforced by clinical and

prognostic findings. Among all the potentially altered

thyroid metabolism forms, LT3S has been extensively

studied in patients with both early and overt HF. The

prevalence of LT3S changes with the severity of disease,

being approximately 20–30% in patients with overt HF and

less than 10% in those with early HF [9–16, 126]. T3

reduction is more frequent in patients in NYHA classes

III–IV [11, 12, 14] (Fig. 2) and is frequently associated

with a catabolic pattern characterized by lower insulin

levels, higher cortisol levels [14], lower plasma lipid levels

[12, 13], lower body weight and lower albumin levels [10,

12, 14]. From a hemodynamic point of view, a low cardiac

index with increased left ventricular end diastolic pressure,

increased right atrial filling pressure and a greater func-

tional impairment assessed by VO2 peak has been observed

in low-T3 patients [10, 14]. Furthermore, in asymptomatic

and mildly symptomatic patients with non-ischemic left

ventricular dysfunction, T3 values and T3/T4 ratio are

linked to both severity of left ventricular dysfunction and

clinical status, being progressively lower in patients with

more depressed ventricular dysfunction (and higher BNP

values) and early symptoms of HF as expressed by NYHA

class [16]. In this study, T3 was an independent predictor

of left ventricular dysfunction at univariate regression

analysis and the only independent predictor of NYHA class

at multivariate analysis, whereas BNP was the most

important predictor of left ventricular dysfunction only. A

possible explanation for these findings is that at early

phases of left ventricular dysfunction, when HF is still a

organ (cardiac) disease without systemic involvement and

full activation of the neuroendocrine system, T3 is a mar-

ker of cardiac impairment. Conversely, when cardiac

disease progresses towards overt HF, the prevalence of

LT3S increases and T3 concentration is not yet related to

cardiac dysfunction, but represents a marker of multi-sys-

tem involvement and thus an important prognostic marker

of death. This hypothesis is reinforced by the evidence of

the prognostic stratification of LT3S syndrome in patients

with cardiac diseases and in particular, in HF patients. In an

unselected sample of 573 patients with cardiac disease,

cumulative and cardiovascular mortality were significantly

higher in patients with than in those without LT3S (14.4%

vs. 3%, and 7.5% vs. 1.5%, respectively) with a good

correlation between free T3 (fT3) values and survival time

(r = 0.60, P \ 0.001) [12]. More recently, in a cohort of

3308 cardiac patients, survival rate for cardiac death was

lower in patients with SHYPO, or LT3S with respect to

euthyroid patients, suggesting that, independently on any

form of mild thyroid dysfunction—either primary or sec-

ondary (low T3)—a normal thyroid status is essential for

maintaining systemic and cardiovascular homeostasis;

when euthyroidism is persistently lost, an increased whole-

body and cardiovascular vulnerability is observed [9].

The prognostic impact of LT3S has been documented in

several studies of patients with both ischemic and non-

ischemic HF and different degrees of disease severity. In

58% of patients hospitalized for chronic advanced HF,

Hamilton et al. observed a reduction in fT3 index and an

13%

24%

30%

NYHA I-II NYHA III NYHA III-IV

Opasich et al.* 
Asheim et al.**
Iervasi et al.***

Opasich et al.* 
Asheim et al.**
Iervasi et al.***

Asheim et al.**

Fig. 2 Prevalence of Low T3 Syndrome through clinical evolution of

chronic heart failure * Opasich et al. [14]; ** Ascheim et al. [11];

*** Iervasi et al. [12]
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elevation in rT3, with the consequent reduction in fT3

index/rT3 ratio. The 1-year survival rate was 100% for

patients with a normal and only 37% for those with a low

fT3 index/rT3 ratio [10]. These data were more recently

confirmed by Kozdag et al. in a group of 111 patients with

ischemic and non-ischemic dilated cardiomyopathy and

advanced NYHA class (III-IV). In this study patients with

fT3/fT4 \ 1.7 had a significantly less favorable outcome

compared with those having higher fT3/fT4 ratio with a

sensivity, specificity, positive and negative predictivity of

100, 71, 36, and 100%, respectively [15]. In a group of 281

patients with post-ischemic and non-ischemic dilated car-

diomyopathy, T3 levels and ejection fraction were the only

independent predictors of cardiovascular and total mortal-

ity at univariate and multivariate regression analysis [13].

When evaluating the prognostic power of these two pre-

dictors by receiving operating characteristics (ROC) curve,

the area under ROC curves (AUC: Area Under the Curve)

showed a slightly higher prognostic accuracy for left ven-

tricular ejection fraction (AUC = 0.659, P \ 0.0001) as

compared to total T3 (AUC = 0.610, P \ 0.0001),

although the difference between the two areas was not

statistically significant (P = 0.733) [127]. Based on the

above considerations a new integrated prognostic index

was extracted from the multiple logistic regression model,

and the AUC curve of this integrated index was obtained.

The final result was that the AUC curve for this integrated

index (0.759, P \ 0.0001) was significantly higher than

that of T3 and left ventricular ejection fraction alone in

comparison to the AUC for both individual left ventricular

ejection fraction and total T3 curves, resulting that the

difference between the areas was statistically significant

(P = 0.008 vs. left ventricular ejection fraction AUC,

P = 0.003 vs. total T3 AUC). The analysis of the ROC

curves indicates that the sensitivity of total T3 was higher

than that of left ventricular ejection fraction in the higher

specificity region of the ROC, indicating that the

prognostic incremental value of total T3 was particularly

evident in patients with severely reduced left ventricular

ejection fraction, i.e., \0.20. According to the best cut off

value of 0.20 for left ventricular ejection fraction, as

assessed by ROC curve (sensitivity = 31%, specific-

ity = 84%) in combination with the low limit of normal

range of total T3 (1.2 mmol/l), four groups were identified

[13]. As showed in Kaplan–Meyer survival curves (Fig. 3),

the estimated survival of patients with an ejection fraction

\20% and a total T3 level B1.2 mmol/l was significantly

reduced with respect to the others, and particularly with

respect of patients with ejection fraction \20% and T3

levels C1.2 mmol/l revealing that the measurements of T3

levels adds prognostic information to conventional clinical

and functional parameters, even among patients with low

ejection fraction. These observations well fit with the

common clinical observation that patients with the same

ejection fraction may have different functional status, as

expressed by NYHA class, and different prognosis and

clearly indicate that T3 state does not represent a mere

surrogate of other more powerful and frequently-used

indicators of bad outcome.

Low T3 syndrome and heart failure: an adaptative

mechanism, a maladaptative mechanism or both?

The link between T3 and HF is well documented. However

this does not imply a causal association. Several doubts

remain whether the T3/HF link is adaptative, and thus

beneficial, or maladaptative. In accordance with the

experimental and clinical findings LT3S can be even more

considered directly and unfavorably involved in the HF

progression process. This hypothesis is sustained by the

evidences showing that: (1) in in vitro and ex vivo exper-

imental studies an altered TH metabolism modifies

cardiovascular homeostasis with regard to cardiac protein

Ejection fraction>20% and total T3>1.2 nmol/L
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gene expression, diastolic and systolic myocardial func-

tion, cardiac histology, cardiomyocyte morphology, and

myocardial blood flow [102–125]; (2) TH replacement

therapy reverses all these alterations; (3) LT3S is associ-

ated with different clinical parameters of disease severity in

HF [9–16]; (4) LT3S is just associated with a worse

prognosis in HF patients [9, 12, 13]. This new hypothesis

contrasts with the previous one indicating that decreased

T3 concentration is the result of an adaptative process

finalized to reduce catabolic processes and thus energy

expenditure [128, 129]. This interpretation is mainly

founded on the apparently lack of symptoms and signs

compatible with hypothyroidism in patients with LT3S.

However taking into account all the experimental and

clinical evidences and also the neuroendocrine interpreta-

tive model of HF in which neuroendocrine activation is

initially compensatory and finally toxic, the two hypothesis

of the LT3S role in HF can be enclosed in a unique sce-

nario. At early phase of HF LT3S appearance may be an

adaptative mechanism due to reduced cardiac output,

having a potential beneficial effect through reducing met-

abolic demand [128]. This accounts for the correlation

between severity of left ventricular dysfunction and T3

circulating levels [16]. Thereafter when persistently acti-

vated, a LT3 state may represent a maladaptive mechanism

favouring cellular, morphostructural and functional cardiac

(and vascular) remodeling and thus HF progression.

Is it time for TH-system based therapy in patients

with heart failure?

All the above-mentioned experimental and clinical evi-

dences portend the observation of increased cardiac risk in

patients with HF and LT3S and offer a mechanistic basis

for a TH-system based therapy in patients with left ven-

tricular dysfunction and low/borderline levels of T3 [130].

In this subset of patients, the restoration of a normal TH

profile might counteract progression of heart disease by (1)

a positive remodeling through the modulation of myocar-

dial gene expression; (2) improving cardiac systo-diastolic

function and reducing vascular resistance with a conse-

quent improvement in hemodynamics; (3) improving

myocardial perfusion, known to be impaired in the early

stage of dilated cardiomyopathy and leading to progression

towards HF and death. Until now, experimental evidences

have shown the benefit of T3 treatment in acute myocardial

infarction [122, 131], and clinical reports have demon-

strated the potential benefit of T3 replacement therapy in

patients with myocarditis [132], cardiogenic shock [133]

and cardiopulmonary bypass [134, 135]. As far as human

HF is concerned, Moruzzi et al. demonstrated that short

and medium term L-T4 treatment in patients with

idiopathic dilated cardiomyopathy improves cardiac con-

tractility, resting circulatory parameters and exercise

performance, without significant side effects [136, 137]. In

a group of 23 patients hospitalized for advanced HF

(NYHA class III-IV) and subjected to short-term intrave-

nous T3 administration at supraphysiological doses (bolus

only or bolus plus infusion) Hamilton et al. showed an

increase in cardiac output and a reduction in SVR, without

change in blood pressure or HR in patients who received

the larger T3 doses [138]. In all these clinical studies, TH

treatment does not produce side effects when administered

in either physiological or short-term pharmacological

doses. On the basis of these previous findings, our group

studied 20 patients with HF and low T3 levels and ran-

domized them to treatment with T3 infusion for 3 days at

physiological dosage or to placebo [139]. Interestingly, the

restoration of normal T3 plasma levels was associated with

an increase in SV and left ventricular end diastolic volume

when compared with pre-treatment levels and with pla-

cebo. These beneficial effects on functional parameters

were further reinforced by the evidence of a positive

neuroendocrine reset, with a significant decrease in nor-

epinephrine, aldosterone and NT-pro BNP plasma levels.

An example of this T3-induced neuroendocrine reset is

shown in Fig. 4. The potential clinical relevance of

T3-induced neuroendocrine deactivation in patients with

left ventricular dysfunction is clearly deducible from

analysis of reported data in the literature showing highly

beneficial effects of aldosterone and b-adrenergic antago-

nists in terms of survival, rate of hospitalization, symptoms

and cardiac performance [1–4]. In spite of these observa-

tions, it is clear that the small cohort of patients enrolled in

all the studies cited above, the absence of a sufficient

period of observation and the lack of control and ran-

domization, i.e., Hamilton’s study, largely affect the

correct interpretation of results, particularly in view of

possible long-term administration of synthetic TH is con-

cerned. In this context, other therapeutical strategies useful

for restoring a normal TH axis could be represented not

only by the use of synthtetic T3 and T4, but also by the use

of TH analogs [140] like 3,5-diiodothyropropionic acid

(DITPA), which has shown to have cardiac inotropic

selectivity and minimal effects on HR and metabolic

activity [141–143]. Another potential new frontier could be

represented by gene therapy able to modify TR expression

or deiodinase activity, both involved in determining tissue

hypothyroidism as observed in patients with HF. As far as

TRs expression is concerned, Belke et al. [95] have shown

that in mice subjected to aortic constriction to generate

pressure overload-induced hypertrophy and to gene therapy

using adeno-associated virus expressing either TRa1 or

TRb1, treatment with T3 was associated with an

improvement in contractile function and SERCA
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expression. Similar results were obtained by Trivieri et al.

[144] in transgenic mice overespressing D2 in the heart.

These had enhanced contractile function in association

with changes in the expression of calcium handling pro-

teins and were particularly resistant to pressure-induced

impairment of calcium cycling and contractility.

Conclusions and perspectives

More and more emerging experimental and clinical findings

strongly support the concept that TH plays a fundamental

role in cardiovascular homeostasis in both physiological

and pathological conditions. However, additional patho-

physiological studies in animals and humans are needed to

better define the potential positive and/or negative effects of

an altered thyroid metabolism as observed throughout

evolution of HF. Large multicenter, placebo-controlled

prospective studies could provide safety and prognostic

effects of chronic treatment with thyroid hormone

replacement therapy with L-T3 and/or L-T4. Important

issues should be a clear definition of primary and secondary

end points (i.e., mortality, hospitalization, quality of life,

side effects, etc.) as well as type, dosage and schedule of

treatment. Other interesting therapeutic strategies are the

use of TH analogs or specific modulation of TR or desio-

dase expression in the heart and/or peripheral tissues. The

latter options seem particularly interesting if we consider

that the finding of a D2 (and D3) gene expression in the

cardiovascular system open the way to potentially inter-

esting therapeutic perspectives involving novel molecular

and pharmacological strategies in the field of HF.
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